An analysis of blocks sampling strategies in compressed sensing

نویسندگان

  • Jérémie Bigot
  • Claire Boyer
  • Pierre Weiss
چکیده

Compressed sensing is a theory which guarantees the exact recovery of sparse signals from a small number of linear projections. The sampling schemes suggested by current compressed sensing theories are often of little practical relevance since they cannot be implemented on real acquisition systems. In this paper, we study a new random sampling approach that consists in projecting the signal over blocks of sensing vectors. A typical example is the case of blocks made of horizontal lines in the 2D Fourier plane. We provide theoretical results on the number of blocks that are required for exact sparse signal reconstruction. This number depends on two properties named intra and inter-support block coherence. We then show through a series of examples including Gaussian measurements, isolated measurements or blocks in time-frequency bases, that the main result is sharp in the sense that the minimum amount of blocks necessary to reconstruct sparse signals cannot be improved up to a multiplicative logarithmic factor. The proposed results provide a good insight on the possibilities and limits of block compressed sensing in imaging devices such as magnetic resonance imaging, radio-interferometry or ultra-sound imaging. Key-words: Compressed Sensing, blocks of measurements, MRI, exact recovery, `1 minimization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accelerating Magnetic Resonance Imaging through Compressed Sensing Theory in the Direction space-k

Magnetic Resonance Imaging (MRI) is a noninvasive imaging method widely used in medical diagnosis. Data in MRI are obtained line-by-line within the K-space, where there are usually a great number of such lines. For this reason, magnetic resonance imaging is slow. MRI can be accelerated through several methods such as parallel imaging and compressed sensing, where a fraction of the K-space lines...

متن کامل

A Block-Wise random sampling approach: Compressed sensing problem

The focus of this paper is to consider the compressed sensing problem. It is stated that the compressed sensing theory, under certain conditions, helps relax the Nyquist sampling theory and takes smaller samples. One of the important tasks in this theory is to carefully design measurement matrix (sampling operator). Most existing methods in the literature attempt to optimize a randomly initiali...

متن کامل

An Algorithm for Variable Density Sampling with Block-Constrained Acquisition

Reducing acquisition time is of fundamental importance in various imaging modalities. The concept of variable density sampling provides a nice framework to address this issue. It was justified recently from a theoretical point of view in the compressed sensing (CS) literature. Unfortunately, the sampling schemes suggested by current CS theories may not be relevant since they do not take the acq...

متن کامل

Adaptive Sampling Rate Assignment for Block Compressed Sensing of Images Using Wavelet Transform

Compressed sensing theory breaks through the limit that two times the bandwidth of the signal sampling rate in Nyquist theorem, providing a guideline for new methods for image acquisition and compression. For still images, block compressed sensing (BCS) has been designed to reduce the size of sensing matrix and the complexity of sampling and reconstruction. However, BCS algorithm assigns the sa...

متن کامل

Unmanned aerial vehicle field sampling and antenna pattern reconstruction using Bayesian compressed sensing

Antenna 3D pattern measurement can be a tedious and time consuming task even for antennas with manageable sizes inside anechoic chambers. Performing onsite measurements by scanning the whole 4π [sr] solid angle around the antenna under test (AUT) is more complicated. In this paper, with the aim of minimum duration of flight, a test scenario using unmanned aerial vehicles (UAV) is proposed. A pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014